Structural Characterization of the N-terminal Oligomerization Domain of the Bacterial Chromatin-structuring Protein, H-NS

Debora Renzoni1, Diego Esposito1, Mark Pfuhl1, Jay C. D. Hinton2, Christopher F. Higgins3, Paul C. Driscoll1,4 and John E. Ladbury1*

The H-NS protein plays a key role in condensing DNA and modulating gene expression in bacterial nucleoids. The mechanism by which this is achieved is dependent, at least in part, on the oligomerization of the protein. H-NS consists of two distinct domains; the N-terminal domain responsible for protein oligomerization, and the C-terminal DNA binding domain, which are separated by a flexible linker region. We present a multidimensional NMR study of the amino-terminal 64 residues of H-NS (denoted H-NS1-64) from Salmonella typhimurium, which constitute the oligomerization domain. This domain exists as a homotrimer, which is predicted to be self-associated through a coiled-coil configuration. NMR spectra show an equivalent magnetic environment for each monomer indicating that the polypeptide chains are arranged in parallel with complete 3-fold symmetry. Despite the limited resonance dispersion, an almost complete backbone assignment for 1HN, 1Hα, 15N, 13CO and 13Cα NMR resonances was obtained using a suite of triple resonance experiments applied to uniformly 15N-, 13C/15N- and 2H/13C/15N-labelled H-NS1-64 samples. The secondary structure of H-NS1-64 has been identified on the basis of the analysis of 1Hα, 13Cα, 13Cβ and 13CO chemical shifts, NH/solvent exchange rates, intra-chain H N-HN and medium-range nuclear Overhauser enhancements (NOEs). Within the context of the homotrimer, each H-NS1-64 protomer consists of three α-helices spanning residues 2-8, 12-20 and 22-53, respectively. A topological model is presented for the symmetric H-NS1-64 trimer based upon the combined analysis of the helical elements and the pattern of backbone amide group 15N nuclear relaxation rates within the context of axially asymmetric diffusion tensor. In this model, the longest of the three helices (helix 3, residues 22-53) forms a coiled-coil interface with the other chains in the homotrimer. The two shorter N-terminal helices fold back onto the outer surface of the coiled-coil core and potentially act to stabilise this configuration.

Introduction

H-NS is involved in the condensation of bacterial DNA and controls the expression of about 30 known genes, mainly as a negative regulator of transcription (Spassky et al., 1984; Drlica & Rouviere-Yaniv, 1987; Bertin et al., 1990; Higgins et al., 1990; Ussery et al., 1994; Laurent-Winter et al., 1997). The packaging of bacterial chromosomal DNA is thought to be via oligomerisation of a small group of proteins, of which H-NS is an important member. These provide a protein...
scaffold with which DNA is associated. The H-NS protein is composed of 136 amino acid residues, and comprises at least two functional domains: a C-terminal domain involved in DNA binding and an N-terminal domain responsible for protein-protein interactions and homo-oligomerisation (Ueguchi et al., 1997; Smyth et al., 2000). The N and C-terminal domains are separated by a flexible linker region (Smyth et al., 2000). The oligomerisation of H-NS is fundamental to its function, since a truncated form of the protein (containing only 63 or 64 residues from the N terminus) that is able to form heterodimers/oligomers with full-length H-NS protein in vitro, exhibits a dominant negative effect on the regulation of gene transcription by intact H-NS (Williams et al., 1996; Ueguchi, et al., 1996, 1997).

Previously we demonstrated that full-length H-NS from Salmonella typhimurium is capable of forming large, heterodisperse homo-oligomers, of a size which is dependent upon the concentration of the protein. A truncated form of the H-NS protein (residues 1-89), which lacks only the C-terminal DNA-binding domain, is able to adopt a range of oligomeric states similar to that of the full-length protein. However, a polypeptide comprising the N-terminal 64 residues of H-NS (H-NS64) self-associates to form a hydrodynamically discrete homotrimeric species. Amino acid sequence analysis and secondary structure predictions suggest that this homotrimer is likely to be dominated by contributions from an α-helical coiled-coil conformation. We hypothesised that this trimeric unit represents a building block for the higher-order structure which forms the basis of the full-length H-NS-mediated scaffold for DNA packaging (Smyth et al., 2000).

Although the three-dimensional solution structure has previously been described for the C-terminal DNA-binding domain of H-NS (residues 89-136, Shindo et al., 1995, 1999), to date no high-resolution structural analysis of the N-terminal domain has been reported. We have found that HNS1-64 yields NMR spectra that, although exhibiting very poor chemical shift dispersion, are amenable to investigation by multi-dimensional heteronuclear NMR methods. Here we report the polypeptide backbone resonance assignments and predicted secondary structural features of the N-terminal domain of H-NS1-64 determined by 15N, 13C and 2H-isotope labelling and heteronuclear NMR spectroscopy. In addition we present a model for the global fold of the N-terminal domain of H-NS based upon the combined analysis of the regular secondary structure elements and the pattern of backbone amide bond 15N nuclear relaxation rates analysed within the framework of an axially asymmetric diffusion tensor.

Results and Discussion

Determination of the secondary structure of residues 1-64 of H-NS

NMR spectra for full-length H-NS showed that narrow lines were only obtained for residues corresponding to the C-terminal DNA-binding domain. The resonances of the N-terminal oligomerisation domain were obscured by extreme line broadening, thereby precluding structural analysis of the full length protein. To enable structural determination of the N terminus of the protein a series of truncated H-NS constructs were made. In this work we focussed on the analysis of the heteronuclear NMR spectra for the H-NS1-64 polypeptide construct which is known to form a hydrodynamically discrete homotrimer species (Smyth et al., 2000).

We expressed and labelled S. typhimurium H-NS1-64 with stable NMR-active isotopes allowing the use of triple resonance heteronuclear NMR experiments. The cysteine at position 20 in the wild-type protein, which is not highly conserved among the known sequences of bacterial H-NS homologues, was replaced by serine to prevent inter-subunit disulphide bond formation (Smyth et al., 2000). We showed previously that this mutation has no effect on the protein structure and function, since wild-type H-NS and H-NSC20S show the same CD spectrum and thermal melting characteristics, and possesses a similar binding affinity for DNA.

Figure 1 displays the 2D 15N-1H HSQC spectrum for a uniformly labelled sample of HNS1-64. This spectrum, although yielding relatively poor chemical shift dispersion, shows only a single cross-peak for each residue in the polypeptide, consistent with a symmetric homo-oligomeric structure. The initial NMR experiments for resonance assignment were performed with a uniformly 2H/15N/13C-labelled H-NS1-64 sample. An enhancement in the sensitivity and resolution of the spectra from a reduction of the detrimental nuclear relaxation effects that arise for large molecules in solution was obtained by perdeuteration of the sample (LeMaster & Richards, 1988; Torchia et al., 1988).

A set of triple resonance experiments that provided 3D HNCA, HN(CA)CA, HN(COCA)CB, HN(CA)CB, HNCO, HN(CA)CO datasets were used to obtain sequence-specific assignments of the NMR signals of the polypeptide backbone. 3D 15N NOESY-HSQC and 15N TOCSY-HSQC spectra recorded on a uniformly 15N-labelled sample were used to assign 1H signals. Using these experiments an almost complete backbone 1H, 15N, 13C and 12CO assignment was possible (the chemical shift assignments have been submitted to the BioMagResBank; BMRB 4802). The triple resonance NMR experiments were also performed on a 15N/13C-labelled sample in order to account for the deuterium isotope effect on chemical shift values. A partial assignment of the 1H and 13C side-chain
resonances has been obtained from the analysis of a three-dimensional 13C-13C nuclear Overhauser effect (NOE) experiment recorded at 800 MHz (Fischer et al., 1996). The assignment of the backbone and the side-chain signals proved extremely difficult due to the substantial resonance overlap in the spectrum. This signal overlap is due both to the dominant contribution of α-helical secondary structure and the primary sequence of the HNS 1-64 polypeptide which contains few aromatic residues, several identical amino acid motifs, and strings of consecutive identical amino acids (see H-NS 1-64 primary sequence in Figure 2).

We analysed the NOESY spectra of HNS 1-64 to obtain short and medium-range interproton NOE contacts to assist the characterisation of the secondary structure. The majority of $\text{H}^\text{N}(i)$-$\text{H}^\text{N}(i+1)$ and $\text{H}^\text{H}(i)$-$\text{H}^\text{N}(i+3)$ NOEs were obtained from a 15N-separated NOESY-HSQC spectrum recorded with an 80 ms NOE mixing time. A 3D version of the 4D 15N, 13N HSQC-NOESY-HSQC experiment (Kay et al., 1990a) was recorded to resolve overlap amongst H^N-H^N NOEs in the 3D NOESY-HSQC spectrum. To distinguish between overlapping peaks, the experiment was performed in 3D mode incorporating two indirect 15N-separated dimensions. This spectrum yields cross-peaks with chemical shift coordinates $\{\text{H}^\text{N}(o_1), \text{H}^\text{N}(o_2), \text{H}^\text{N}(o_3)\}$ in contrast to $\{\text{H}^\text{N}(o_1), \text{H}^\text{N}(o_2), \text{H}^\text{N}(o_3)\}$ coordinates of the 3D NOESY-HSQC experiment. In the case of pairs of NOEs involving amide signals where two H^N chemical shifts are degenerate but the 15N chemical shifts are resolved, the ambiguity of assignment may be removed by combined analysis of the different 3D spectra. The backbone NOE assignment of HNS 1-64 is essentially complete. The pattern of secondary chemical shifts, short and medium-range interproton NOEs, and NH/solvent exchange peaks (Figure 3) was analysed to determine the secondary structure of H-NS 1-64. The structure is characterised by three α-helices, two short and one long: helix 1 (H1) spans residues 2 to 8; helix 2 (H2) spans residues 12 to 20; and helix 3 (H3) spans residues 22 to 53.

In addition we investigated the residue-specific dynamic properties of the polypeptide backbone of 15N-labelled H-NS 1-64 using 15N nuclear relaxation measurements, including longitudinal (T_1) and transverse (T_2) 15N relaxation time constants, and the magnitude of $\{\text{H}^\text{H}\}^{15}$N heteronuclear NOEs (see...
Figure 3. Measurements were recorded with three different dilutions of the sample. The 15N relaxation parameters were analysed in the mode of standard model-free treatment (Lipari & Szabo, 1982; Kristensen et al., 2000), initially with the assumption of isotropic rotational diffusion, to...
extract the apparent isotropic molecular rotational correlation times. This analysis yielded values of the apparent rotational correlation time for the H-NS1-64 of $\tau_c = 10.62(\pm 0.40)$ ns, $\tau_c = 11.69(\pm 0.37)$ ns, and $\tau_c = 12.44(\pm 0.37)$ ns corresponding to protomer (homotrimer) concentrations of 0.25 (0.083) mM, 0.5 (0.17) mM, and 1.5 (0.5) mM, respectively. Over the range of polypeptide concentration examined there was no systematic variation of cross-peak chemical shifts, and no indication of chemical exchange phenomena giving rise to isolated outlying values of the transverse relaxation rates. The overall pattern of nuclear relaxation rates was preserved across the polypeptide sequence (data not shown), suggesting that the concentration-dependent variation in relaxation parameters can be attributed to weak, non-specific self-association of H-NS1-64 homotrimers. As this affects all residues to the same extent, the T_1/T_2 ratios are scaled accordingly. Thus, the profile of their distribution, important in the anisotropy analysis, is unaffected.

Examination of the profile of the H-NS1-64 15N nuclear relaxation parameters (Figure 3) reveals a starkly non-uniform distribution of values. Simple inspection of the profiles in Figure 3 reveals apparent steps in the profile of T_1 and T_2 values and T_1/T_2 ratios. In combination with the experimentally predicted secondary structure of the polypeptide (Figure 2) it is clear that the data for helix 3 (H3) are divided into two distinct regions. The first region comprises residues L22 ~ A45 which possesses characteristics of a rigid, canonical α-helix (S2, secondary shifts). However for the section of the polypeptide running from A46 to the C-terminal end of H3 at residue R53 some form of intermediate state is apparent. For this latter region the secondary chemical shifts are still predictive of helical structure, but with somewhat diminished magnitudes compared to the corresponding values

Figure 3. A summary of the 15N nuclear relaxation parameters determined for 15N-labelled HNS1-64. Steady-state heteronuclear $[^1\text{H}]^{15}\text{N}$ NOE values, along with $^{15}\text{N} T_1$ and $^{15}\text{N} T_2$ relaxation data and T_1/T_2 ratios plotted against the primary sequence and secondary structure of H-NS1-64.
for residues L22-A45. In addition, protection of the amide groups from solvent exchange is detected only for residues L22-A45; residues to the C-terminal side of this section all yield NH/H2O solvent exchange cross-peaks. Further evidence of the variation of structural characteristics within H3 is revealed by the pattern of [1H]15N heteronuclear NOEs which exhibit values around 0.8 throughout the first part of the helix but drop to ~0.5 from residue A45 onwards, decreasing to values of below zero for the extreme flexible C terminus (Figure 3). Unresolved overlap of HN signals and poor resolution of the HN region in the 3D 15N NOE-HSQC spectrum prevented the unambiguous assignment of intra-chain HN-HN and medium-range NOE with absolute certainty for T54, R55 and K56 and therefore precluded the definition of the conformation adopted by these residues. The region from residue K56 to the C terminus appears to be strongly disordered. Comparison of peak intensity ratios between 2D 15N-HSQC spectra recorded on fresh samples and samples that had suffered some adventitious proteolysis (as a function of age) showed that H-NS1-64 undergoes degradation of the chain at sites downstream of residue T54. Since stable α-helices are not easily accessible to protease action, this observation is consistent with the lack of regular secondary structure at the C terminus of the polypeptide.

The computer program TALOS (Cornilescu al., 1999) was used to obtain predicted upper and lower bounds on the φ and ψ backbone torsion angles for H-NS1-64. The TALOS program used the experimental input secondary chemical shifts to search a “protein-of-known-structure chemical shift database” for instances of strings of residues with chemical shift similarity and residue type homology. The values of φ and ψ torsion angles derived with TALOS (Figure 2) from the chemical shifts of H-NS1-64 are fairly consistent, for most residues, with the secondary structure predicted from manual inspection of NMR parameters reported in Figure 2. Discrepancies arise only for the dihedral angle prediction for single residues at the very ends of the three helical regions.

Model of the global topological fold of H-NS1-64

The unusual pattern of 15N relaxation parameters within the apparent core regions of the H-NS1-64 polypeptide chain have prompted us to examine whether these data can be analysed in an internally consistent manner with a model of the structure that allows for rotational diffusion anisotropy. It is well known that the relationship between distribution of heteronuclear 15N T2 and T1 relaxation times and the magnitude of anisotropic rotational diffusion can provide information on the spatial arrangement of the N-H bond vectors relative to a single molecular reference frame (Tjandra et al., 1995, 1997). In the absence of any structural information, the analysis of the experimental distribution of the T1/T2 ratios can yield an estimate of the degree of symmetry and the magnitude of the components Dzz, Dyy, and Dxx of the molecular rotational diffusion tensor in the principal axis system (Clore et al., 1998). In Figure 4 we demonstrate, by simple mathematical modeling, that the distribution of 15N T1/T2 ratios yields patterns that are strongly characteristic of the type and degree of rotational diffusion anisotropy present. As a result we can relate the overall shape of the polypeptide to the relaxation data. Figure 4 also reports the histogram representing the distribution of the experimental 15N T1/T2 ratios obtained for H-NS1-64. The one-sided shape of the distribution corresponds to what would be predicted for an axially symmetric rotational diffusion tensor where Dzz ≠ Dyy = Dxx. We note that for a parallel symmetric oligomer with number of polypeptide chains ≥3 the rotational diffusion tensor will be, by definition, axially symmetric. It should be noted that whilst the experimental data shown in Figure 4 correspond to a H-NS1-64 protomer concentration of 1.5 mM (homotrimer concentration 0.5 mM), essentially identical distributions where

![Figure 4](image-url). (a)-(c) Simulations of the distribution of 15N T1/T2 values that would be obtained for molecules with (a) axially symmetric prolate (shown diagrammatically), (b) non-axially symmetric, and (c) oblate (shown diagrammatically) rotational diffusion tensors. (d) Experimental distribution of 15N T1/T2 values for H-NS1-64 measured at 600 MHz. The highest and lowest values in the histogram corresponding to (T1/T2)max and (T1/T2)min used to obtain the components of the axially symmetric diffusion tensor are 32.1 and 11.0, respectively.
obtained at the two lower concentrations tested (vide infra, data not shown).

In the case of an axially symmetric diffusion tensor and in the absence of large amplitude internal motion (S > 0.9) the 15N T_1/T_2 ratio for a single NH group depends only on the angle θ and the diffusion tensor components D_\parallel and D_\perp (see Experimental Procedures). Assuming good sampling of NH bond vector directions in the experimental distribution the highest value of the T_1/T_2 ratio, ($T_1/T_2)_{max}$ corresponds to a bond vector lying along the z-axis of the diffusion tensor ($\theta \approx 0^\circ$) whilst the lowest value of the T_1/T_2 ratio, ($T_1/T_2)_{min}$ corresponds to a vector in the x-y plane. A best-fitting procedure based on the equations (1)-(3) (see Experimental Procedures) and the extracted values of ($T_1/T_2)_{min}$ and ($T_1/T_2)_{max}$ allows the determination of the D_\parallel and D_\perp components of the diffusion tensor. With knowledge of D_\parallel and D_\perp it is possible to extract, using the values of the T_1/T_2 ratio, an estimate of the angle θ for individual NH bonds. For H-NS$_{1-64}$ this procedure can be exploited to define the relative orientation of the three z-helical segments in the structure. With the assumption that the N-H bond vectors within a single helical fragment are oriented approximately parallel with the helical axis it is possible to calculate an average value for the angle formed by each helix of HNS$_{1-64}$ with the unique axis of the diffusion tensor. Values for T_1/T_2 are available for 54 backbone NH groups (Figure 3), of which (two for helix 1, six for helix 2 and 29 for helix 3) 43 yielded an experimental uncertainty smaller than ± 2. These correspond to residues with $S > 0.9$, $[^1H]^{15}$N NOE >0.4 and exclude residues with evidence of any exchange contribution to T_2, i.e. those residues lacking substantial internal motion. Of these, the range of T_1/T_2 values was ($T_1/T_2)_{max} = 32(\pm 2)$, ($T_1/T_2)_{min} = 11(\pm 2)$ (Figure 4). The axially symmetric molecular diffusion tensor components calculated on the basis of the experimental ensemble are $D_\parallel = 2.6 (\pm 0.5) \times 10^7$ s$^{-1}$ and $D_\perp = 9.3 (\pm 0.3) \times 10^5$ s$^{-1}$. By averaging the derived values of θ for individual NH bonds in the three helical segments of HNS$_{1-64}$ we obtained estimates of the resulting angles that each helix forms with the z-axis of the axially symmetric diffusion tensor: H3, 23(14)$^\circ$; H2, 47(12)$^\circ$, and H1, 60(17)$^\circ$. The variation of amide bond orientations, and consequently the variation of 15N T_1/T_2 ratios, within each helical segment lead to a rather high uncertainty on the predicted angles. However it is clear that the experimental 15N T_1/T_2 values indicate that the helix direction vectors are significantly divergent.

Additionally, we analysed the relaxation data for H-NS$_{1-64}$ in a variety of alternative models, including explicit allowance for a rhombic contribution (i.e. $D_{xx} \neq D_{yy}$) to the rotational diffusion tensor, which would provide scope for symmetric parallel (C$_2$ symmetry) or antiparallel homodimer (C$_1$ symmetry) and “dimer of dimers” antiparallel homotetramer (C$_2$ symmetry) configurations of the polypeptide. These calculations uniformly provided results where the derived rhombic component was small (D_{xx}/D_{yy} in the range 0.92 - 1.0) and yielded only small variations on the derived helix direction angles (data not shown). This is entirely to be expected given the one-sidedness of the distribution of 15N T_1/T_2 ratios shown in Figure 3. Along with the experimental observations of the trimeric nature of H-NS$_{1-64}$ (Smyth et al., 2000) and the magnetic equivalence of all protomers in the homo-oligomer, these analyses strongly support the conclusion that the structure of the polypeptide is consistent with a parallel-homotrimer (C$_3$-symmetry axis) with an axially symmetric rotational diffusion tensor.

Due to the angular dependence and the degeneracy of the second-rank axially symmetric diffusion tensor, each calculated helix direction angle corresponds to a conical surface about the axis of the diffusion tensor upon which the position of the helix is constrained (Figure 5). It is reasonable to suppose that the axial symmetry of the diffusion tensor reflects the overall symmetry of the H-NS$_{1-64}$ homotrimer structure. The axis of symmetry (i.e. the z-axis) of the diffusion tensor has necessarily to be colinear with the C$_3$ symmetry axis of the homotrimer. Helix 3 (residues 22-53) forms the lowest angle with the unique axis of the

Figure 5. Overview of the models for the helix direction angles in the structure of the H-NS$_{1-64}$ protomer consistent with the anisotropic diffusion measurements. H1, H2, H3 represent the helical segments formed by residues 2-8, 12-20 and 22-53, respectively. The broken lines describe conical surfaces where the position of the helices is constrained on the basis of the 15N relaxation data analysis. The angles that the helices form with the unique axis of the tensor are 23°, 47° and 60° for H3, H2, and H1, respectively. The z-axis coincides with the C$_3$ symmetry axis for the parallel homotrimer in which helix H3 forms the core of the coiled-coil structure. Within the four arrangements, arising from the degeneracy of the helix directions consistent with the axially symmetric diffusion tensor, model d most resembles a previously reported structural arrangement in which short helical segments fold back to interact with the coiled-coil core of the structure (OHara et al., 1999).
The Oligomerization Domain of H-NS

Conclusions

Here we report the first characterisation of the secondary structure of the oligomerisation domain of H-NS (residues 1-64). This study represents a significant advance in the structural and functional dissection of the H-NS protein, providing structural information on the conformation of the polypeptide within the context of the homotrimer. This self-associated state provides the basic building block for the structurally intractable, macromolecular, heterodisperse, full-length H-NS protein scaffold required for DNA packaging in bacteria. Extensive mutational studies on H-NS have described only four point mutations within the 64 N-terminal residues of H-NS that affect the protein function. Mutations at position R11, R14 and R53 affect expression of the proV and bgl operons (Ueguchi et al., 1996) and a mutation of L29 affects oligomerisation and the role of H-NS as a transcription repressor (Ueguchi et al., 1997). It is interesting to note that the arginine side-chain H frequencies of residues R11 and R14 are dramatically shifted to low field, resonating at 9.1 and 8.3 ppm, respectively (Figure 1). Such low field shifts are usually due to hydrogen bond formation. These effects probably represent intra-chain or inter-chain interactions important for the stability of the HNS1-64 structure. This provides a rationalisation for why it is not feasible to mutate these arginine residues without disrupting the function of H-NS. Furthermore, L29 is part of the longest helix of H-NS1-64 and is predicted in our model to be one of the residues of the hydrophobic interface of the coiled-coil forming part of the characteristic heptad repeat sequence. Thus, our structural data are able to provide insight into the mechanism by which reported mutations result in altered function from disruption of H-NS1-64 trimer formation.

The combined analysis of experimental NMR chemical shift, NOE, NH/solvent exchange and 15N nuclear relaxation data unambiguously identify the C-terminal region (from A45 to R53) as more flexible than the rest of H3. The timescale for this flexibility is not well defined, but likely to be on the picosecond-nanosecond timescale as reflected in 15N relaxation data. The lack of dynamic stability in this region of H3 in the trimeric state raises the possibility that this region of the H-NS is involved in formation of higher oligomeric states in the full-length protein, i.e. this segment might provide a nucleation site of higher-order assembly.

One interesting feature of the structural data reported here is that H-NS1-64 consists of three distinct α-helical segments. The first two helices (H1 and H2) are each comprised of only approximately two full turns (seven and nine residues, respectively). The third helix, H3, which spans residues 22-53, is predicted to form the core of the coiled-coil structure. Similar helical arrangements have been observed for other protein structures that contain coiled-coil elements (e.g. O’Hara et al., 1999). In these structures the short helices are found in a conformation where the most N-terminal residues form intramolecular interactions with the long helix forming the central core of the coiled-coil. This helical arrangement is broadly consistent with the models in Figure 5. This motif could represent a common conformation which acts to stabilise coiled-coils.

The structural data presented here, combined with our investigation on the oligomerisation of H-NS (Smyth et al., 2000), enable us to speculate that the packaging of bacterial DNA involves the interaction of the homotrimeric subunits, which are able to stack to form a multimolecular scaffold. Based on the limitation in the number of monomers that can be associated via a coiled-coil structure with the symmetry properties described for H-NS1-64 it is likely that the trimers interact via their N and/or C termini. The C-terminal domain is able to independently interact with DNA, since the flexible linker between it and the N-terminal oligomerisation domain provides significant freedom of motion.

Experimental Procedures

Sample preparation

Escherichia coli BL21 (DE3) cells were transformed with a pET4b plasmid encoding N-terminally His6-tagged H-NS1-64 as described previously (Smyth et al., 2000). When uniform 15N and 15N/13C labelling was carried out, the bacteria were grown in M9 minimal medium using 15NH4SO4/12C6 glucose and 15NH4SO4/13C6 glucose as the sole nitrogen and carbon sources, respectively: 500 ml flasks containing 150 ml of LB medium (Luria Bertani) and carbenicillin (100 μg/ml) were inoculated with cells from a freshly transformed colony. The pellet from 10 ml of the overnight cultures was used to inoculate 2 l flasks containing 500 ml of M9 minimal
medium and carbenicillin and grown in a shaking incubator at 200 rpm and 37 °C until an A_{600} of 0.5 was reached. The T7 promoter was then induced by addition of isopropyl-β-D-thiogalactopyranoside (IPTG; Melford Laboratories Ltd.) to a final concentration of 0.5 mM and incubated at 200 rpm and 37 °C for four hours. The cells were centrifuged at 5000 rpm in a SORVALL GS3 rotor and the resulting cell pellet was stored at −70 °C.

Perdeuteration (>95% at C positions) and uniform 15N/13C isotope labelling of the polypeptide was achieved by growing the bacteria in M9 minimal medium with 2H2O instead of H2O and using 15NH4SO4/13C-glucose as the sole nitrogen and carbon sources. 10 ml vials containing 5 ml of LB medium (Luria Bertani) and carbenicillin (100 µg/ml) were inoculated with cells from a freshly transformed colony. The pellets from these 10 ml LB cultures, left to grow for four hours, were used to inoculate 50 ml of M9 medium in H2O, with 100 µg/ml carbenicillin, in a 500 ml flask and grown in a shaking incubator at 200 rpm and 37 °C until an A_{600} of 0.4 was reached. The pellet from this 50 ml culture was used to inoculate 200 ml of M9 minimal medium in 2H2O with the same amount of carbenicillin in a 500 ml flask and grown in a shaking incubator at 200 rpm and 37 °C until an A_{600} of 0.5 was reached. The pellet was stored at −70 °C.

The purification of H-NS1-64 was performed as reported (Smyth et al., 2000). Recombinant H-NS1-64 contains four additional N-terminal residues GSHM (designated here as −4, −3, −2 and −1), extraneous of wild-type H-NS, and the first 64 residues of H-NS (designated here 1 to 64). Since in vivo H-NS from S. typhimurium undergoes post-translational modifications which result in the cleavage of the methionine residue at the N terminus, here residue number 1 (serine) is defined as the residue immediately following cleaved methionine (−1). The parallel and perpendicular components of an axially symmetric diffusion tensor are defined as $D_x = D_z = (D_x + D_y)/2$, respectively. The spectral density function for a prolate ellipsoid is given by (Lipari & Szabo, 1982):

$$f(\omega) = \sum_{k=1,2,3} A_k \left[\frac{\tau_k}{1 + \omega^2 \tau_k^2} \right]$$

where ω is the angular frequency and S the generalised order parameter for rapid internal motion. τ_1, τ_2 and τ_3 are time constants and are defined as follows: $\tau_1 = (6D_z)^{-1}$, $\tau_2 = (D_z + 5D_x)^{-1}$ and $\tau_3 = (4D_x + 2D_y)^{-1}$; the terms A_1, A_2 and A_3 are given by $A_1 = (1.5cos^8 - 0.5)^2$, $A_2 = 3sin^8cos^6 \phi$ and $A_3 = 0.75sin^8$ where θ is the angle between the N-H bond vector and the z-axis of the diffusion tensor. The 15N T_1 and T_2 relaxation times can be expressed in terms of spectral density function $f(\omega)$ as (Abragham, 1961):

$$\frac{1}{T_1} = d[f(\omega_1) + 3f(\omega_2)]$$

$$+ 6f(\omega_3 + \omega_1) + c[f(\omega)]$$

NMR spectroscopy

NMR spectra were acquired on a Varian UNITYplus 500 MHz, a Varian UNITYplus 600 MHz and a Bruker AVANCE 800 MHz spectrometer at temperatures ranging between 25 °C and 36 °C. The experiments recorded on 15N-labelled polypeptide were 2D 15N HSQC (Bodenhausen & Ruben, 1980); 1H NOESY (Kumar et al., 1980); 1H TOCSY (Braunschweiler & Ernst, 1983); 13N NOESY-HSQC (Ikura et al., 1990); 3D version of the 4D 15N,13N HSQC-NOESY-HSQC (Kay et al., 1990); 15N-separated TOCSY-HSQC (Gronenborn et al., 1989); HNHA (Kay & Bax, 1990); [1H,15N] steady-state NOE; 15N T_1 and T_2 relaxation experiments (Kay et al., 1989, 1992a). The experiments recorded on 15N/13C-labelled samples were 6C-separated NOE-HSQC (Zuidervogel et al., 1990); 13CHCHC-TOCSY (Bax et al., 1990); HNCA, HNCO, HN(CO)CA, HN(CA)CO (Kay et al., 1990b); HNCAcb (Wittekind & Mueller, 1993); HN(CO)CAcb (Grzesiek & Bax, 1992); HCCH 13C-13C NOE (Fischer et al., 1996). The 3D experiments recorded on triple 2H,15N/13C-labelled samples were HNCA, HN(CO)CA, HN(CO)CAcb, HN(CA)CO (Yamazaki et al., 1994) and HNCO. The 15N nuclear relaxation experiments were recorded and analysed essentially as described by Kristensen et al. (2000). Unless indicated otherwise, all H-NS1-64 samples were dissolved in 90% H2O/10% D2O, containing 300 mM NaCl, 20 mM potassium phosphate, 1 mM EDTA, at pH 7.0. The monomer concentration of the polypeptide ranged between 1 and 2 mM (measured using UV absorption at 280 nm with ε280 = 1280 M⁻¹ cm⁻¹).

A mixing time of 80 ms was used in all NOE experiments, except for the HCCCH 15C-15C NOESY spectrum where a 1.2 seconds mixing time was used. The 2D 1H TOCSY and the 3D 15N-separated TOCSY-HSQC employed mixing times of 50 and 32 ms, respectively, using the TOWNY sequence (Kadkhodaei et al., 1993).

With the exception of the 13C-13C NOE experiment all heteronuclear NMR spectra were recorded with gradient sensitivity enhancement in the first indirect heteronuclear dimension of the 2D and 3D experiment (Kay et al., 1992b). Indirect dimensions were processed after appropriate rearrangements of FIDs according to the States-TPPI procedure (States et al., 1982). Chemical shift calibrations for all nuclei were performed relative to the proton resonance of DSS as suggested previously (Wishart et al., 1995). Spectra were processed with NMRPIPE (Delagio et al., 1995) and analysed with AZARA 2.0 (Boucher, 1996) and ANSIG (Kraulis, 1989).
\[
\frac{1}{T_2} = \frac{d}{2}[4J(0) + J(\omega_H - \omega_N) + 3J(\omega_N)] \\
+ 6J(\omega_H) + 6J(\omega_H + \omega_N)] \\
+ \frac{c}{6}[3J(\omega_N) + 4J(0)] \\
\]

where the terms \(d\) and \(c\) contain constants such as the gyromagnetic ratios and the Larmor frequencies of the two nuclei, the distance between the nuclei, and the components of the axially symmetric \(^{15}N\) chemical shift tensor (Abragham, 1961).

Acknowledgements

The authors thank Dr Kevin Gardner for the protocol to produce perdeuterated proteins and Dr Daniel Nettis-plach for assistance with recording NMR data at 800 MHz at the BBSRC National 800 MHz NMR Centre in Cambridge. Thanks also to Dr M. A. Williams for critical reading of the manuscript.

During the course of this work D.R. was supported by a European Union Training and Mobility of Researchers Fellowship and D.E. by the Biotechnology and Biological Sciences Research Council (BBSRC); M.P. is a Royal Society University Research Fellow; J.C.D.H. is grateful for the support of a Wellcome Trust Programme Grant (045490); C.F.H. is supported by the Medical Research Council; J.E.L. is a Wellcome Trust Senior Research Fellow. This work was funded by a grant to J.E.L. and P.C.D. from BBSRC. Additional funds were provided by the Wellcome Trust.

References

Bax, A., Clore, M. & Gronenborn, A. M. (1990). \(^{1}H\)-\(^{1}H\) Correlation via isotropic mixing of \(^{13}C\) magnetization, a new three-dimensional approach for assigning \(^{1}H\) and \(^{13}C\) spectra of \(^{13}C\)-enriched proteins. J. Magn. Reson. 87, 425-429.

Kristensen, S. M., Siegal, G., Sankar, A. & Driscoll, P. C. (2000). Backbone dynamics of the C-terminal SH2 domain of the p85\(\alpha\) subunit of phosphoinositide 3-kinase. Effect of phosphoryros go peptide binding...

Edited by A. R. Fersht

(Received 31 July 2000; received in revised form 18 January 2001; accepted 18 January 2001)